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This article examines a two-dimensional problem of the splitting of a nonlinearly elas- 

tic body made of a material of the harmonic type [i] with the assumption that the acting 
forces retain their magnitude and direction during deformation [2]. 

Let a rigid semi-infinite wedge of constant thickness 2h be driven into an infinite 
plate made of the above-described brittle material. The material has the elastic char- 
acteristics E (elastic modulus) and ~ (Poisson's ratio). Driving of the wedge into the 
plate forms a rectilinear crack ahead of the wedge, the length of the crack being desig- 
nated here as L. We then assume that cohesive forces of intensity G act in the tip region 

of the crack. We introduce the universal constant K of the material, called the cohesion 
modulus and determined by the formula [3] 

d 
K ~a(t) dt (i) 

o 

where d is the width of the tip region. 

Subsequent discussions will be based on the following assumptions, which were formu- 
lated in [3, 4]: i) The size of the crack-tip zone is negligibly small compared to the size 
of the entire crack; 2) the distribution of the displacement in the tip zone is independent 
of the acting loads; 3) the stresses on the crack edges are finite. 

Along with these assumptions, we will suppose that there is no friction in the contact 
region between the wedge and plate. 

This problem was solved in the linear case in [3]. Below We examine the problem in a 
nonlinear formulation in the sense that the material surrounding the crack is taken to be 
nonlinearly elastic as described above. 

For the physical region we take the plane of the variable z = x + iy, cut out along 
the positive part of the Oy axis. We assume that the wedge acts on the segments [L; ~] 
of this axis. The length of the crack formed in front of the wedge is assumed to be so much 
greater than h that the boundary conditions for the entire crack surface can be referred to 
the above cut-out section. Thus, we can use this method of modeling for the present case as 
well, since the nonlinear character of the problem is determined by the behavior of the har- 
monic elastic material surrounding the wedge (see [i, 2] and the numerical data at the end of 
this article). After considering this, we can represent the boundary conditions of the prob- 
lem in the form [5] 

X U = 0 on [0; ~ [ ,  X x = C(g) on [0; d], Xx = 0 on]d; L]; (2)  

Xx = --f(g), u(x + O, g ) =  h, u (x - -O ,  y ) :  --h on ]L;~[ ,  (3) 

where Xx, Yy, and Xy are components of the stress tensor; u and v are components of the dis- 
placement vector; f(y) is a real function specified on [L; ~] and characterizing the forces 
acting on the wedge. This function is unknown beforehand and is liable to determination. 

We will solve the problem using complex representations of the fields of the elastic 
elements in the region outside the crack through two functions ~,(z) and @(z) which are 
analytic in the investigated region (see [6]): 

X~+ Y v + 4 ~ =  ~§ 4(~§  ~(q)a~* az*. ] /y  gQ(q), Y v - - X x - - i i X u = -  I / y - -  q "az ~ '  (4)  

(5) 
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where 

0"-7 = ~ ~'~ (~) + 2-+ 2~ ~-~.) ' o-~ 
- -  x+-- SL 1' (6) 

] / '7  = Oz* a-z* o~* 07* _ I o z *  I 2 (~  4-  ~)  . 
oz 03 a~ oz;  q = z I T ~  [; f ~ ( q ) = q  ~-k2~ ' (7) 

and ~ a r e  the  Lame c o n s t a n t s .  

In the case being examined, the function ~(z) is bounded at infinity, while ~ (z) has the 
following asymptote at large [z] [6] 

~(z.) = z + ~0(~), (8) 

where ~o(Z) is a function which is analytic and bounded at z = ~. 

It is easy to see that adherence to the first condition of (2) leads on the basis of (4) 
and (6) to the relation 

-~(~))~"(~F~"~(y) - -~ ' (y )  = 0 at y > L. (9) 

We will differentiate Eq. (5) with respect to y and take (9) into account in the result- 
ing relation. Then after some elementary transformations we obtain the following on [L; ~] 

, ' ] - 1 ,  y IL;ool. (10) v~ - -  iu~ = ~o ''~ (y) ~, ~ i , ~  (y) 

Then from (4) we arrive at the following relation by means of (3), (6), and (9) 

X~ = 2,u(E H- b)[I m':~(g)I- iI/[mlm'~(g)l + L -P ~1 on [L;o~[. (11) 

After this, we use the relation 

to map the investigated physical region conformally and mutually unambiguously onto the lower 
half-plane S of the plane of the variable { = ~ + in (~ = pe i9) and we keep the former no- 
tation for the functions being examined. 

We conclude on the basis of (8) and (12) that the behavior of ~P '(~) with sufficiently 
large ]~] is characterized by the formula 

~,'(~) = 2i~ + O(~- 9. (13) 

Now let us return to Eq. (Ii), from which we find the following by means of (3) and 

(12) 

~-~Y I- (14) 

o~ , ~ = l - o o ;  - F ~ [ U I I / Z ;  o~[. 

Considering the known properties of functions holomorphic in the region and taking ac- 

count of (13), from (14) we obtain 

~' (t) = 2itexp l__. (oF(g~) dg . ~ { j  ~ _ ~  wit~ ~ S ,  (15) 
? 

where 

F(g~) = ~ l n ~  b 2 (~+  N + 1 ( ~ )  �9 (16) 

Now let us return to (4) and require satisfaction of the condition of finiteness of the 
stresses at the ends of the crack. In the transformed region this condition is equivalent 
to the equality ~ '(0) = 0, which on the basis of (i) and (15) leads to the relation 

-~Z F~ 

1 ~ ~F(aS) d~ I S ~F(~)d~ 1 ~ ~F(c/Z) d~ 0 at ~-----0, 
~-7 ,~---------~ + ~ - ~ ~ ~ -  t 

-o~ VZ -gff 
o r  
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j 2 f (a ~') d(~ - -  G ((F') d~ = 0. 
~Ii . 

VZ o 

From here, with allowance for (i), we obtain the following (in the old coordinates) on the 
basis of hypotheses 1 and 2: 

oo 

~--V~ =K" (17) 

Equation (17) expresses the condition of equilibrium of the crack, but its left side 
is unknown because f and, thus, F have not yet been determined. 

For this, we return to Eq, (i0) and insert into it the values obtained from (12) and 
(15). Then after certain manipulations and application of the familiar Sokhotskii--Plemelj 
relations, on the basis of (3) we obtain 

o r  

hn  exp .~- o - % 
? 

(18 )  

This equality represents a singular integral equation for determining the function F and 
y and, as condition (17), it is outwardly similar to the corresponding relations of the linear 
classical theory. The difference is that the function F(y) in the case being examined is 
determined through f(y) by nonlinear relation (16) (in the linear theory, F(y) = f(y)). 

With allowance for (12), singular integral equation (18) has the solution 

F(y) : A VT/Vy(-N--n~- L), (19) 

where A is a yet-unknown constant. To determine it, we introduce (19) into the left side of 
(17). Then after some elementary calculations we obtain A = K/~ and, thus, the solution of 
(19) will have the form 

F(g) = K V T / [ ~  Vg (y  - L)]. (2o) 

With allowance for (20), we find the values of f(y) from (16) in the form 

[ . K I / Z  t I + ~ - - ,  ~exp ! (y) = 2~, [,~p A V ~  = L) -~, = V~-7~y--~- L)J" 

It must be remembered that in accordance with the linear theory 

i(y) = g }'s VyT~ -- L)I. 

To determine the length L of the crack being examined, we insert (15) into (i0) and re- 
quire that as y § ~ the left side of this relation is equal in absolute value to h. Then, 
as can easily be shown, for large y we should have 

F(g) = E arcsiu h~ [ 2 g ( i  - -  v2)g] - 6 0 ( g J ) .  ( 2 1 )  

By comparing (20) and (21) we find the sought formula in the form 

L = E 2 ( a r c s i n  h )~ / (4 (1  - -  v2 )2K2) .  ( 2 2 )  

In accordance with the classical linear theory, as is known, 

L = E 2 h 2 / ( 4 ( l  - -  ~2)2K~. ( 2 3 )  

Equations (15), (20), and (22) also determine the sought function (15), after which the 
rest of the unknowns of the problem are found [6]. 

It follows from comparison of (22) and (23) that 

5 = f n / L  ~ = (arcsin h/h)% 

Table i presents values for this relation with different h. It is evident from the 
table that the length of the crack formed ahead of the wedge is greater according to the non- 
linear theory than according to the linear theory. 
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TABLE i 

h '[' o,i t ~ t 0,2 I 0,25 I 0,3 [ 0,35 I 0,4 

6 [I,004011,0080 i,0140it,0217 1,0316 [ t,0432 I 1,0582 

0,45 I 

t,0760 

TABLE 2 

h 

L 

O,t 

18,40 
18,40 

0,i5 I 0,2 

40,41 I 73,61 
4t,77 74,72 

0,25 

115,02 
1t7,59 

0,3 I o,4 

i65,03 t 294.45 
170,78 3i1157 

TABLE 3 

h 

L 

0,1 

20,78 
20,78 

0,15 

46,77 
47,17 

0,2 I 0,25 

83,12 129,87 
84,37 132,58 

0,3 I 0,4 

t87,02 332,48 
i92,84 351,8i 

0,5 

t ,0966 

0,5 

470,08 
504,62 

0,5 

519,50 
569,79 

As an example, we also calculated the lengths of a rectilinear crack for different mate- 

rials with different values of h. Tables 2 and 3 show results of the calculations for steels 
4330 with an elastic modulus E = 2-106 kg/cm 2 and a cohesive modulus K = 2.5"104 kg/cm ~2 

(Poisson's ratio ~ = 0.26). Also shown are results for aluminum 2219-T87 with the characteris- 
tics E = 0.8"106 kg/cm 2 and K = i0 ~ kg/cm $2 (v = 0.35) [4]. Here, Tables 2 and 3 show the 
values obtained from the linear theory first and the values from the nonlinear theory second. 

The data shows that the nonlinear theory leads to an increase in crack length compared to 
the linear (classical) theory. The increase is greater, the greater the thickness of the 
rigid wedge, in the first case, the difference is 2.5, 3.1, and 7.2% with h = 0.15, 0.3, and 
0.5. In the second case, the difference is 0.9, 3.2, and 9.8% with h = 0.15, 0.3, and 0.5- 

0.9. 
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